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Abstract— The emergence of convolutional neural networks
(CNNs) has greatly promoted the development of hyperspectral
image classification (HSIC). However, some serious problems
are the lack of label samples in hyperspectral images (HSIs),
and the spectral characteristics of different objects in HSIs are
sometimes similar among classes. These problems hinder the
improvement of HSIC performance. To this end, in this article,
a positive feedback spatial-spectral correlation network based
on spectral interclass slicing (PFSSC_SICS) is proposed. First,
a spectral interclass slicing (SICS) strategy is designed, which
can remove similar spectral signature between classes and reduce
the impact of similar spectral signature of different classes on
HSIC performance. Second, in order to solve the impact of
the lack of labeled samples on HSIC, a positive feedback (PF)
mechanism and a spatial-spectral correlation (SSC) module are
introduced to extract deeper and more features. Finally, the
experimental results show that the classification performance of
the PFSSC_SICS is far exceed than that of some state-of-the-art
methods.

Index Terms— Hyperspectral image classification (HSIC), pos-
itive feedback (PF), spatial-spectral correlation (SSC), spectral
interclass slicing (SICS).

I. INTRODUCTION

WITH the continuous update and iteration of remote
sensing imagers, the research on hyperspectral images

(HSIs) has become increasingly extensive [1], [2], [3], [4],
[5]. Unlike ordinary images, each pixel of HSI has hundreds
of continuous bands and has spatial texture information [6].
These advantages provide more possibilities for diversified
tasks in the field of HSI, such as agriculture cultivation,
mineral mining, military target detection, and environmental
monitoring [7], [8], [9], [10], [11].

As one of the most important applications, hyperspectral
image classification (HSIC) has gradually become a research
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hotspot. In the early days, considering that HSIs contain
rich spectral information, Pal [12] proposed a pixel-by-pixel
classification method based on support vector machine (SVM).
Chen et al. [13] proposed a sparse representation classification
(SRC) method. Although these methods are relatively simple,
they mainly focus on spectral dimension features. In order to
improve the classification performance, they tend to deeply
mine the high-dimensional spectral information, which makes
the number of model parameters increases sharply, causing the
model to fail to converge and the problem of over-fitting [14],
[15], [16], [17], [18]. This makes it difficult to learn an efficient
classification model from high-dimensional data under small
samples, which is the so-called Hughes phenomenon [19],
[20]. In addition, the spectral information of HSI also has the
phenomenon of “the same substance with different spectrum”
and “different substance with the same spectrum,” so it is
hard to obtain a good classification performance only relying
on spectral information. To solve this problem, some works
introduced spatial texture features into HSIC and proposed the
combined classification methods of spatial-spectral features
[21], [22], [23].

However, both the classification methods based on spectral
information and those based on the spatial and spectral infor-
mation all rely on feature extraction [24], [25], [26], [27],
[28], [29], [30], [31]. It is difficult for traditional methods to
extract deep features from HSI datasets with limited samples,
and the emergence of convolutional neural network (CNN)
has brought the classification of HSI into a new era. CNN
has excellent feature extraction ability [22] and can learn
features autonomously for different data. Therefore, a series
of CNN-based HSIC methods has been proposed [32]. First,
in order to use spectral information for classification, a 1-D-
CNN [33] was proposed. However, due to the large amount of
redundant information in the original HSI data, it is difficult to
obtain satisfactory results by using only spectral information to
classify them. Therefore, a 2-D-CNN attempts to extract depth
features from space [34] to make up for the shortcomings
of 1-D-CNN. After that, in order to directly extract spatial-
spectral features, Ying et al. [35] constructed a 3-D-CNN with
3-D convolution kernel. This method of directly extracting
spatial spectrum features can better correlate spatial spectrum
features to improve the classification accuracy of HSI. In order
to extract the deep features of the image, the traditional
CNNs build networks by simply stacking convolution kernels.
This method will sharply increase the number of training

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-5877-1762
https://orcid.org/0000-0003-0157-9926
https://orcid.org/0000-0001-9373-6233


5503417 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 61, 2023

parameters, thus resulting in the burden of hardware equipment
and even the inability of the network to converge. To address
these problems, He et al. [18] proposed residual networks
(ResNets). ResNet solves the problem of deep network train-
ing degradation through residual connection learning, which
improves network performance. By following, Zhong et al.
[36] proposed the spectral–spatial residual network (SSRN).
SSRN is a 3-D-CNN based on residual connection, which can
better extract spatial and spectral information and achieve good
classification results. After ResNet, the emergence of densely
connected convolutional networks (DenseNet) [37], [38], [39],
[40], [41] opened up new paths for researchers.

Furthermore, a series of attention mechanism strategies is
proposed [42], [43], [44], [45], [46], [47], [48]. It improves
the performance of HSIC by enhancing features of interest
and suppressing unimportant features. For example, a dual-
branch multiattention (DBMA) [49] network was proposed.
It adopts a dual-branch structure, extracting the spatial features
and spectral features of HSIs, respectively, and then using the
attention mechanism to “dynamically weight” the features,
thus improving the classification performance. Similarly, a
double-branch dual-attention (DBDA) network proposed by
Li et al. [50] is also a dual-branch network. DBDA also first
extracts features through a dual-branch structure, then uses
an attention mechanism to focus on features of interest, and
finally performs classification. However, there are still some
difficulties for the HSIC task. First, the direct extraction of
high-dimensional spectral features will inevitably increase the
amount of network training parameters, making it difficult for
the network to converge; second, there are local interclass
similarities in high-dimensional spectral features [51], and
these redundant features will affect the classification, making
classification more difficult; and the third is the lack of HSI
label samples.

To overcome these problems, this article proposes a pos-
itive feedback spatial-spectral correlation network based on
spectral interclass slicing (PFSSC_SICS). First, the spectral
interclass slicing (SICS) strategy is designed to remove redun-
dant information in spectral features and reduce the spectral
dimension. Second, the spatial features are extracted with a
spatial positive feedback (Spa_PF) correction mechanism
of the spatial branch. Then, the spectral positive feedback
(Spe_PF) compensation mechanism and the spatial-spectral
correlation (SSC) module are combined on the spectral branch
to generate associated spatial-spectral information. Next, the
associated spatial-spectral features are fused with the features
extracted by the spatial branch. Finally, fully connected cap-
sule layers are used for classification.

The main contributions of this article include the following
three parts.

1) In order to solve the problem of effectively extracting
high-dimensional spectral features and the disturbance of
local similarity between classes in spectral information
on classification, a strategy of dimension reduction based
on interclass slicing (SICS) is proposed. SICS can find
some bands with similar spectral characteristics between
classes in HSI and remove these bands by a slicing
strategy. This method can effectively remove spectral

redundancy and retain more discriminative spectral fea-
tures, which is beneficial to HSIC.

2) In order to alleviate the impact of lack of training
samples, a positive feedback (PF) mechanism is intro-
duced to the PFSSC_SICS, which can extract more
and deeper features to overcome the shortage of label
samples. The PF mechanism is divided into Spa_PF and
Spe_PF, which extract spatial-spectral features, respec-
tively. By constantly adjusting and compensating the
long-distance features with the short-distance features,
more abundant and refined features can be obtained.

3) The SSC module is designed in the network. SSC can
closely link the spatial and spectral features and make
the spatial and spectral information corresponds one
to one, which is more conducive to the fusion of the
subsequent spatial spectrum branches. And a multiscale
self-weighting strategy is designed in SSC, which not
only enlarges the receptive field, but also obtains abun-
dant weighted features. In order to make the network
lightweight, group convolution is also introduced in SSC
to reduce network parameters.

The rest of this article is organized as follows. Section II
introduces the overall architecture of PFSSC_SICS and the
four modules SICS, Spa_PF, Spe_PF, and SSC. Section III
discusses the hyperspectral dataset, experimental parameter
settings, the effectiveness of the proposed strategy, and the
validation of the effectiveness of PFSSC_SICS. Section IV
summarizes the work of this article.

II. METHODOLOGY

To improve the performance of HSIs, this article proposes
a PFSSC_SICS network. The PFSSC_SICS mainly includes
four parts: SICS, Spa_PF, Spe_PF, and SSC. This section will
describe PFSSC_SICS, SICS, Spa_PF, Spe_PF, and SSC in
detail.

A. Overall Framework of PFSSC_SICS

The overall framework of the PFSSC_SICS is shown in
Fig. 1. The PFSSC_SICS is mainly divided into two parts.
In the first part, the SICS designed in this article is used
to process the raw spectral information of the HSI dataset.
The redundant spectral features between different classes are
removed, and the indexes of the remaining important spectral
features are saved. In the second part, the spectral and spatial
features of HSI are extracted by using the dual-branch network
structure. A Spa_PF mechanism is proposed to extract spatial
features. The Spa_PF weights the near-field spatial features
and delivers them to the far-field feature extraction for feature
correction. On the spectral branch, the Spe_PF mechanism and
the SSC module are combined to extract rich spectral informa-
tion on HSI. In particular, the spectral information extracted on
the spectral branch also contains spatial information. This way
of associating spectral features with spatial features facilitates
subsequent feature fusion. Finally, the extracted features go
through global averaging pooling (GAP) and compression
operations, and then go through a fully connected layer and a
Softmax layer for classification.



SHI et al.: PF SSC NETWORK BASED ON SPECTRAL SLICE FOR HSIC 5503417

Fig. 1. PFSSC_SICS network. (The PFSSC_SICS can be divided into four parts. The first part uses the SICS to process redundant information. Part2 executes
the Spe_PF and the SSC to extract SSC features. Part3 using the Spa_PF extracts spatial features. Part4 shows the classification. In this figure, x ∈ Rh×w×b

represents the HSI raw data. X ∈ Rh×w×(b−n) represents the input data processed by SICS. x ′
∈ R9×9×(b−n),1 indicates the patch input size. xout1 ∈ R9×9, 64,

x0 ∈ R9×9,64, and xout2 ∈ R9×9,64 are the outputs of the Spa_PF, SSC, and Spe_PF, in turn. represents the multiplication, represents the addition, and
represents the connection operation.).

B. SICS Mechanism
In HSI, the spectral information of different object cat-

egories has local similarity between the categories, which
is also called “different substance with the same spectrum.”
This is because the spectral curves of ground objects will be
affected by their own water content, density, relative angle
to the sun, and even different environments. As shown in
Fig. 2, they are the local spectrograms of the four datasets,
Indian Pines (IN), Salinas Valley (SV), Kennedy Space Center
(KSC), and Pavia University (UP), respectively. Obviously,
the spectral information of different categories in these black
boxes tends to coincide. This overlapping spectral information
can easily cause network misclassification and interfere with
the classification process. Although 3-D-CNN can associate
spectral features with spatial features, which alleviates this
problem to a certain extent, the performance of HSIC is
still limited. Therefore, the SICS strategy is proposed in the
PFSSC_SICS, which can effectively solve this problem.

In general, the SICS finds and removes those bands with
local interclass similarity through operations such as slic-
ing, normalizing, and calculating the coefficient of variation.
Specifically, the 3-D HSI data with size w × h × b are
first reshaped into a 2-D matrix with size c × b, where w,
h, and b correspond to the width, height, and the number

of bands of the HSI, respectively. Then, the 2-D matrix is
sliced column by column to obtain the set θ , in which each
slice corresponds to a band, and each element in each slice
corresponds to the spectral information of different objects in
this band. Next, each of the obtained slices is normalized to
obtain θ ′, which is to avoid the large difference between the
averages of the data in different bands and then affect the
subsequent comparison. Then, the coefficient of variation for
each slice is calculated and stored in set ϕ, which is equivalent
to a 1-D vector. The dispersion of spectral information in
different bands is determined according to the coefficient of
variation. The smaller the coefficient of variation is, the more
aggregated the information is, and vice versa. At the same
time, the coefficient of variation can eliminate the influence
of the mean value again. Arrange the elements in ϕ from
small to large, extract their corresponding indexes, and save
them in the set ϕ′. The elements in ϕ are the coefficients
of variation corresponding to each band, and sorting them is
actually sorting the dispersion of spectral information of bands.
Then, slice ϕ′ to remove the first n indexes and retain the last
b − n indexes. Finally, the remaining indexes are sorted in the
ascending order, and the output of these indexes corresponds to
the bands with the original spectral information. In particular,
slicing the original HSI data according to the output index
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Fig. 2. Local spectral map of HSI dataset (different color curves correspond to different ground object categories).

obtained by SICS can remove n bands with local interclass
similarity. The size of n here depends on the ability of the
network to acquire spectral features and the distribution of
spectral information of objects in different datasets.

The calculation of SICS can be expressed as

X = reshape(x) = [acb]x ∈ Rh×w×b(c = h × w) (1)
θ = {∂i |∂i = slice−1(X)} (2)

θ ′
=

{
Ai |Ai = Normal(∂i ) =

∂i − ∂i

σ∂i

}
(1 ≤ i ≤ b) (3)

ϕ =

ℓ|ℓ =
Std(Ai )

Mean(Ai )
=

√
1
c

∑c
i=1

(
Ai − Ai

)2

Ai

 (4)

ϕ′
= arg sort(ϕ) (5)

ϕ′

b−n =
{
γ |γ = slice−1

(
ϕ′

− ϕ′

n

)}
(1 ≤ n< b) (6)

φ = sorted(ϕ′

b−n). (7)

Here, reshape(·) is the shaping function, which converts the
original 3-D data into 2-D data. c represents the size of the
space dimension flattened by SICS, and c = h × w. slice−1(·)

is a column-by-column slicing function. In (2), θ contains
b different elements ∂ , and each ∂ element is a 1-D vector
containing h × w samples. In (3), θ is normalized to get θ ′.
In particular, ∂i represents the i th element in θ . Therefore, θ ′

also contains b different elements A. In (4), ϕ is obtained
by calculating the coefficient of variation for the elements

in θ ′ one by one, where Ai represents the i th element in θ ′,
Std(·) represents the standard deviation function, and Mean(·)

is the average operation. Similarly, the set ϕ also contains b
elements. In (5), the arg sort(·) function sorts the coefficient of
variation in ϕ in the ascending order and extracts its index to
obtain ϕ′. In (6), ϕ′

n is the set consisting of the first n elements
of ϕ′, and ϕ′

b−n is obtained by cutting ϕ′
n by ϕ′. Finally, in (7),

the elements in ϕ′
b−n are sorted in the ascending order to obtain

the final result. The implementation details of the SICS module
are described in Algorithm 1.

SICS eliminates the influence of the high similarity between
classes of spectral features on classification and is conducive
to improving the classification performance of HSIs. This
module can be applied to different HSI datasets, and as a
plug-and-play module, it provides favorable conditions for
subsequent research. In particular, SICS not only removes
spectral redundant features, but also reduces the dimension of
spectral dimension to some extent. This enables more efficient
extraction of high-dimensional features and reduces computing
costs.

C. PF Mechanism
For the classification of HSIs, feature extraction is an

essential link. The classification performance of a network
depends largely on its feature extraction ability. Therefore,
a PF mechanism is designed in the PFSSC_SICS to enhance
the feature extraction ability of the network.
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Algorithm 1 FImplementation Details of the SICS Module
Input: HSI raw data x ∈ Rh×w×b.
1: Dimension reduction through the reshape(·) function. Con-
vert the input 3D data into 2D data, and the result is recorded
as X ∈ Rc×b(c = h × w).
2: Slice Xcolumn by column by the slice−1(·) operation, and
obtain the set θ .
3: Perform a normalization operation on θ and the result is
recorded as θ ′.
4: Calculate the coefficient of variation for each element in θ ′

and represent the result as set ϕ.
5: Arrange the elements in ϕ in ascending order, and return
the index of all element positions, which is marked as ϕ′.
6: Perform a column-wise slice operation on ϕ′. Remove the
first n(1 ≤ n< b) values in ϕ′ and denote the result as ϕ′

b−n .
7: Arrange the elements in ϕ′

b−n in descending order.
Output: The output of SICS is to keep band indices with
redundant bands removed. The result is recorded as φ.

In particular, PFSSC_SICS first uses large-scale convolution
kernel to extract high-resolution weighted feature and then
uses the obtained high-resolution weighted feature to enhance
low-resolution feature, so that the feature output of the upper
level can be used to adjust the feature extraction of the
lower level, that is, to implement PF adjustment. We divide
the PF mechanism into Spa_PF correction mechanism and
Spe_PF compensation mechanism. Spa_ PF is only used to
extract HSI spatial features. In order to better integrate the
spatial and spectral branches and enable the network to fully
mine the spatial spectrum information of HSI. Therefore, the
proposed Spe_PF is dedicated to the extraction of spectral
features. Although Spe_PF mainly focuses on the extraction of
spectral features, Spe_PF still retains spatial information when
extracting spectral features. In this way, the subsequent SSC
can better correlate the spatial spectrum features. In this way,
the features of spectral branches and the features extracted by
Spa_PF can be better fused in the later feature fusion stage.
Thus, although Spa_PF and Spe_PF have different functions,
they have some connections. The structure of PF mechanism
is shown in Fig. 3.

The Spa_PF contains three types of components: Start Conv
Block, Pointwise Conv Block, and Conv Block. First, Start
Conv Block is utilized to compress the spectral dimension
to avoid introducing too many parameters in the subsequent
spatial feature extraction and SSC work. This method also
preserves the original spatial features to the greatest extent.
Next, a large number of Pointwise Conv Blocks are adopted
in the Spa_PF to extract spatial features. The pointwise convo-
lution of 1×1 and the activation function are combined in the
Pointwise Conv Block to enhance the nonlinear representation
ability of the network. Moreover, different number of channels
in point-by-point convolution is used to strengthen the infor-
mation interaction of channels and establish longer distance
channel dependencies. Using point-by-point convolution can
avoid too many training parameters. Then, the Pointwise
Conv Block features are corrected and fused by using the

weighted features extracted by the Conv Block. Here, the Conv
Block uses the convolution kernel with size 3 × 3 to extract
high-resolution features and uses the sigmiod function for
weighting, and finally uses them to perform PF correction on
the low-resolution spatial features extracted by the Pointwise
Conv Block. Finally, the Spa_PF fuses and weights the feature
x ′

out after Conv Block correction with the original feature x ′

in
to correct feature x ′

out. This method of fusion with the original
features for correction guarantees the integrity of the extracted
spatial features to the maximum extent and compensates for
the information loss in the feature extraction process. The
feature extraction of Spa_PF can be expressed as

x ′

in = F
(
x ′

)
(8)

x ′

out = G
(
G3(x ′

in

)
· R

(
G2(x ′

in

)
· R

(
G

(
x ′

in

)
· R

(
x ′

in

))))
(9)

xout1 = x ′

out × r(x ′

out; x ′

in). (10)

Among them, F(·), G(·), R(·), and r(·) represent different
component operations, respectively. F(·) is the Start Conv
Block operation. G(·) is the Pointwise Conv Block operations.
R(·) is the Conv Block operation. r(·) is the fusion operation
in the final stage, including three consecutive operations of
addition, Relu, and Sigmiod.

For spectral feature extraction, the Spe_PF mechanism is
designed in this article. The structure of the Spe_PF mech-
anism is shown on the right of Fig. 3. The Spe_PF consists
of four types of components: the start layer, the top layer,
the middle layer, and the bottom layer. In order to simplify
the model, the structure of the starting layer, the top layer,
and the middle layer components are set to be the same, and
the 3-D convolution kernel of 1 × 1 × 7 is used for feature
extraction. First, the initial features of the image are extracted
from the start layer, and then, the features are extracted from
the top layer1, the middle layer1, and the bottom layer1.
In particular, top layer1 uses a convolution kernel with a
larger receptive field to extract different features and then
connects with middle layer1 for feature compensation; then,
the feature extraction is performed from the compensated
features by the middle layer2, and the extracted features are
connected with the finer features extracted by the bottom
layer2 to further perform feature compensation; finally, the
bottom layer3 performs feature extraction on the final features
obtained by bottom layer2. The feature extraction process of
Spe_PF can be expressed as

x1 = f
(
x ′

)
(11)

x0 = f 2
[ f 2(x1)|| f ( f (x1)|| f ′(x1))]. (12)

Among them, x ′ and x0 represent the input and output of
the Spe_PF, respectively. Both f (·) and f ′(·) are composite
functions of 3-D convolution, batch normalization, and Relu
activation function. The difference is that f (·) uses a convo-
lution kernel of size 1 × 1 × 7, while f ′(·) uses a convolution
kernel of size 1 × 1 × 9. || represents a connection operation.

D. SSC Module

The fusion of spatial and spectral features is important.
Most of the commonly used methods are to directly fuse the
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Fig. 3. Structure of PF mechanism. (The left is Spa_PF, and the right is Spe_PF. represents the multiplication, represents the addition, and represents
the connection operation.)

extracted features, which cannot well correlate the spatial-
spectral information. Therefore, an SSC module is proposed.
It associates spatial features with spectral features that all
extracted by the Spe_PF and then fuses them with the spatial
features extracted by the spatial branch. Inspired by self-
attention [46] and squeeze-and-excitation (SE) network [52],
a multiscale self-weighting mechanism is constructed in the
SSC module. Different from the linear mapping method in
which the SE network directly weights features and self-
attention, SSC utilizes multiscale convolution to extract fea-
tures of different resolutions then adopts SE to weight different
features separately, and finally self-weights with unweighted
features. In this way, richer and finer SSC features can
be obtained. In addition, in order to reduce the amount of
parameters of the network model, group convolution is also
introduced in the SSC.

The structure of SSC is shown in Fig. 4. Specifically,
SSC first uses the Association Block to associate the space-
spectrum features extracted by Spe_PF. Next, Multiscale
Group Conv Block is adopted to extract spatial-spectral
features of different scales and perform SE weighting on
these features. Then, multiply the extracted multiscale spatial-
spectral features with the SE-weighted spatial-spectral features
to obtain self-weighted spatial-spectral features. By following,
Softmax is adopted to recalibrate the self-weighted space
spectral feature and then multiply them with the multiscale
space spectral feature. Finally, the Pointwise Conv Block is
utilized to fuse and extract the autocorrelated spatial-spectral
features. The related process of the SSC can be expressed as

xre = re
(
xo; ωre

)
(13)

xMGC = MGC(xre; ωMGC) (14)
xSE = SE(xMGC; ωSE) (15)
xRE = Soft max(xMGC · xSE) · xMGC (16)

xout2 = G(xRE; ωRE). (17)

In (13), xo is the feature extracted by Spe_PF, re(·) repre-
sents that the correlation module associates the spatial spec-
trum information in xo, and xre is the feature extracted by
re(·). In (14), MGC(·) is the Multiscale Group Conv Block
operation, and xMGC is the extracted spatial-spectral features
after correlation. In (15), SE(·) represents the SE weighting
operation, and xSE is the SE weighting feature. In (16), xRE
is the autocorrelation feature. Finally, in (17), G(·) is the
Pointwise Conv Block operation, and xout represents the final
output spatial-spectral features after correlation. ωre, ωMGC,
ωSE, and ωRE are the trainable weights corresponding to re(·),
MGC(·), SE(·), and G(·), respectively.

III. EXPERIMENTAL ANALYSIS

First, some datasets involved in the experiment are intro-
duced in this section. The experimental setup is then described.
Then, in order to prove the validity of the PFSSC_SICS, some
ablation experiments are performed to analyze the performance
of each module. Finally, the whole network is quantitatively
analyzed. All experiments are performed on a hardware
platform with AMD 75800H with Radeon Graphics CPU,
NVIDIA GeForce RTX 3070 GPU. The experimental software
platform is the Pycharm operating system with CUDA11.2,
Pytorch 1.10.0, and Python 3.7.4. To eliminate the randomness
of the experimental results, all experiments were performed ten
times and the experimental results were averaged.
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Fig. 4. Structure of SSC module. ( represents the multiplication, and represents the connection operation.)

A. HSI Datasets

All the experiments were carried out on four commonly
used datasets, including the IN, SV, KSC, and UP. The per-
formance of some networks is quantitatively evaluated by three
indicators: overall accuracy (OA), average accuracy (AA), and
Kappa [53]. Their calculation process can be expressed as

OA = 100% ×

∑N
i=1 mi,i

M
(18)

AA = 100% ×
1
N

N∑
i=1

mi,i∑N
j=1 mi, j

(19)

Kappa =

∑N
i=1 mi, j −

∑N
i=1

(
mi,−m−,i

)
/M

M −
∑N

i=1

(
mi,−m−,i

)
/M

(20)

where M is the total number of samples, and mi, j is the
number of samples classified by category j as category i . N
is the number of categories.

The IN retained 200 bands for research. As shown in Table I,
IN includes 10 249 pixels and 16 ground object categories,
and it is the earliest public dataset for HSIC. The SV dataset,
like the IN dataset, was acquired by AVIRIS. As shown in
Table II, SV dataset includes 204 bands, 16 categories, and
a total of 54 129 pixels for classification. The KSC dataset
was also obtained using the AVIRIS and contains 176 bands.
As shown in Table III, there are a total of 5211 pixels of
KSC, including 13 categories. The UP dataset was obtained
by continuously imaging on 115 bands, but in reality, only
103 spectral bands uncontaminated by noise were used for
experiments. As shown in Table IV, UP includes 42 776 pixels
and nine ground object categories.

TABLE I
CATEGORIES AND DIVISION OF SAMPLES ON IN

B. Experimental Setup

The PFSSC_SICS model uses the Adam optimizer, and the
experimental batch size and epochs are set to 64 and 200,
respectively. In addition, for IN, SV, KSC, and UP datasets,
the training samples are 3%, 0.5%, 5%, and 0.5% of the total
samples in the dataset, respectively.

In this article, the input of the PFSSC_SICS is to randomly
select a sample in the HSI as the center pixel and then
use it as the center to segment it into different patches as
input. However, CNNs are particularly sensitive to the spatial
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TABLE II
CATEGORIES AND DIVISION OF SAMPLES ON SV

TABLE III
CATEGORIES AND DIVISION OF SAMPLES ON KSC

TABLE IV
CATEGORIES AND DIVISION OF SAMPLES ON UP

size of the input data. Therefore, the size of the input patch
will directly affect the classification accuracy of the network.
In addition, the learning rate affects how fast the network
converges. And too large or too small learning rate may cause
the problem of local optimal solution in the network. There-
fore, this article explores the relationship between learning
rate and classification accuracy under spatial patches with
different sizes. As shown in Fig. 5, there are similar results
on all four datasets. Specifically, only from the perspective

of patch size, the classification accuracy first increases and
then decreases as the patch increases. Finally, the higher
classification accuracies are all distributed around the patch of
9 × 9. From the perspective of learning rate, the classification
accuracy first increases and then decreases with the decrease
of learning. Finally, the higher classification accuracies are all
distributed around a learning rate of 0.0005. Hence, the patch
size of the PFSSC_SICS is finally set to 9×9, and the learning
rate is set to 0.0005.

In this section, in order to achieve the best classification
performance of the model, the number n of redundant spec-
tral bands cut out by the SICS module is explored. Due
to the different redundancy of spectral information in the
four datasets, the value of n is explored on four classical
datasets. For the IN dataset, set n to {20, 30, 40, 50, 60,

70, 80, 90, 100}, respectively; the values of n on the SV
data are {5, 10, 15, 20, 25, 30, 35, 40, 45}, respectively; for
the KSC and UP datasets, the value of n is set to
{1, 2, 3, 4, 5, 6, 7, 8, 9}, respectively. For each dataset, the
experimental results of the influence of n on the classification
performance are shown in Fig. 6. It can be seen that for
these datasets, the influence of n on the classification accuracy
shows a trend of first increase and then decrease. The classifi-
cation accuracy gradually improves at the beginning because
the proposed SICS removes similar spectral information that
is difficult for the network to distinguish in the initial stage.
As the value of n increases gradually, the similar spectral
information gradually decreases, and the classification accu-
racy shows a downward trend after reaching the peak. This is
because when the classification performance of HSIs reaches
the peak at a given n, the spectral information that is difficult to
distinguish has been removed, and if the spectral information
is further removed by using SICS, the information beneficial
to classification will be removed, resulting in the reduction of
classification accuracy. According to the experimental results
in Fig. 6, in order to achieve the best classification performance
of the model, n is set to 60 for the IN, 25 for the SV, and 5 in
both the KSC and the UP.

C. Ablation Experiments

1) Performance Analysis of SICS: In this section, the
effectiveness of the SICS module is verified. Under the same
conditions, some ablation experiments are performed on the
four datasets. The experimental results are shown in Fig. 7.
Taking the IN as an example, for the PFSSC_SICS with the
SICS strategy, the OA is nearly one percentage point higher
than that without the SICS strategy. For other three datasets,
the classification performance of PFSSC_SICS network with
SICS is also much higher that that without SICS. This proves
that the SICS strategy has made a great contribution to the
improvement of classification performance. In addition, it also
shows that SICS strategy is applicable to different datasets and
has good generalization.

Using SICS strategy to remove spectral redundant infor-
mation can not only greatly improve the classification per-
formance, but also effectively reduce the spectral dimension,
thus reducing the amount of parameters. Table V shows the
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Fig. 5. Relationship between learning rate and classification accuracy under different patch sizes: (a) IN; (b) SV; (c) UP; and (d) KSC.
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（c） （d）

Fig. 6. For each dataset, the impact of n on classification performance: (a) IN; (b) SV; (c) KSC; and (d) UP.

influence of SICS on the number of parameters. It can be
seen that for these datasets, compare with that without SICS
strategy, the amount of network parameters obtained by the

network using the SICS strategy is reduced. This provides
a powerful clue for the research of lightweight networks for
HSIC.
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Fig. 7. Effect of the SICS strategy on classification performance of different
datasets.

TABLE V
INFLUENCE OF SICS ON PARAMETER QUANTITIES

In particular, it can be seen from Table V that the influence
of SICS on parameter quantities varies greatly in different
datasets. This is because SICS sets different n values on
different datasets. It follows the rule that the larger the n value
is, the less the network parameters will be. However, when the
n value is too large, it will affect the classification accuracy
of the network. Therefore, SICS can only reduce the network
parameters in a limited range.

2) Performance Analysis of PF: To verify the validity of
PF, the PF-related modules are removed from the proposed
PFSSC_SICS network, and the similar bands of the spectrum
are cut off using the SICS strategy, and then, the SSC module
performs feature engineering directly. Finally, the features are
sent to Softmax for classification. Compared with the classifi-
cation results of the complete PFSSC_SICS, the experimental
results are shown in Fig. 8. Obviously, the PF is beneficial to
improve the performance of PFSSC_SICS. The PF mechanism
can extract more features that are conducive to classification,
which greatly improves the classification accuracy of the
network.

3) Performance Analysis of SSC: For the SSC module,
some ablation experiments were also performed to verify
its effectiveness. The classification results obtained by the
PFSSC_SICS network with and without the SSC module are
shown in Fig. 9. Obviously, the classification accuracy of
the PFSSC_SICS network with the SSC module has been
improved on the four datasets. This proves that SSC can
better obtain space and spectral joint features and closely
associate these information to improve classification perfor-
mance than the way of directly fusing space and spectral
features.

Fig. 8. Effect of the PF strategy on classification performance of different
datasets.

Fig. 9. Effect of the SSC strategy on classification performance of different
datasets.

D. Verification of the Performance of the PFSSC_SICS

To verify the classification performance of the PFSSC_
SICS, this article compares PFSSC_SICS with eight meth-
ods. These comparison methods almost cover the mainstream
ideas of HSIC at present, including SVM that only extracts
spectral information for pixel-by-pixel classification; a deep
convolution classification method going deeper with contextual
CNN (GDCNN) [54] based on context; fast densely con-
nected network fast dense spectral-spatial convolution net-
work (FDSSC) [55] combining spatial-spectral information;
the SSRN that uses the residual connection method to simulta-
neously extract spatial-spectral information for classification; it
includes SVM that only extracts spectral information for pixel-
by-pixel classification; the depth convolution classification
method GDCNN based on context; FDSSC, a fast and dense
connection network combining spatial spectrum information;
SSRN that uses residual connection to extract spatial and
spectral information for classification; a feedback expansion
convolution network (FECNet) [56] using dilation convolution
to extract features; and two attention networks DBMA and
DBDA and a ResNet attention-based adaptive spectral-spatial
kernel ResNet (A2S2KResNet) [57] based on improved atten-
tion. Tables VI–IX show the classification performance of all
methods on four different datasets.
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TABLE VI
CLASSIFICATION ACCURACY ON IN

TABLE VII
CLASSIFICATION ACCURACY ON SV

TABLE VIII
CLASSIFICATION ACCURACY ON KSC

In Tables VI–IX, compared with other methods, the clas-
sification performance of the method proposed in this article
has been greatly improved on the four datasets. Specifically,

Table VI gives the classification results of all methods on the
IN and evaluates these method using three important indica-
tors, OA, AA, and KAPPA. Compared with other methods,
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TABLE IX
CLASSIFICATION ACCURACY ON UP

Fig. 10. Classification maps of different methods on the IN: (a) ground truth and (b)–(j) SVM, SSRN, FDSSC, GDCNN, DBMA, DBDA, FECNet,
A2S2KResnet, and PFSSC_SICS, respectively.

the PFSSC_SICS can better distinguish each category of IN.
This is because of PFSSC_SICS first uses SICS to remove
a large amount of redundant information in HSI and avoid
mutual interference between different categories. In addition,
on the three indicators of OA, AA, and KAPPA, PFSSC_SICS
also has great advantages, which benefit from PFSSC_SICS
extracts rich spatial spectrum correlation information and
makes full use of this information for classification, and
has great advantages in OA, AA, and KAPPA. Similarly,
the classification performance of the proposed PFSSC_SICS
method on other three datasets is also far superior to other
methods. In particular, as shown in Table IX, for the UP
dataset with complex and dense ground object distribution,
the classification performance of PFSSC_SICS still com-
pletely outperforms other comparison methods. This provides
more possibilities for related applications such as urban
planning.

To visually prove the effectiveness of PFSSC_SICS, the
classification results of all methods on different datasets are
visualized, as shown in Figs. 10–13. It can be seen that

compared with the PFSSC_SICS, there are more misclassifi-
cations in the classification maps of other methods, the cross-
contamination between different categories is serious, and a
lot of noise is generated in the classification maps. This is
particularly evident in the classification map of SVM. This
is due to the interference of spectral similarity information
and the insufficient ability of the network to extract features,
resulting in poor classification results. For the classification
maps obtained by the PFSSC_SICS on the four datasets,
each map has clear category boundaries and there are few
misclassifications. This proves that the proposed PFSSC_SICS
method has excellent classification performance. In addition,
PFSSC_SICS has achieved the most stable classification accu-
racy on different datasets. This proves that the proposed
PFSSC_SICS method has excellent generalization and can
adapt to datasets of different scenarios.

Figs. 14 and 15 show the relationship between training loss
and epochs, and the relationship between training accuracy
and epochs on the IN and SV using different methods, respec-
tively. To demonstrate the convergence of the PFSSC_SICS,
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Fig. 11. Classification maps of different methods on the SV: (a) ground truth and (b)–(j) SVM, SSRN, FDSSC, GDCNN, DBMA, DBDA, FECNet,
A2S2KResNet, and PFSSC_SICS, respectively.

Fig. 12. Classification maps of different methods on the KSC: (a) ground truth and (b)–(j) SVM, SSRN, FDSSC, GDCNN, DBMA, DBDA, FECNet,
A2S2KResNet, and PFSSC_SICS.

we compared PFSSC_SICS with two other methods that per-
formed well on IN and SV, including FDSSC and DBDA.
In general, the loss curve and accuracy curve of PFSSC_SICS
are relatively smoother on both datasets. Specifically, it can
be seen from Fig. 14 that the training loss values of the
three methods show an overall downward trend as the training
progresses. However, compared to the other two methods, the
training loss of PFSSC_SICS decreases faster and more stably.
This shows that PFSSC_SICS has a good convergence and
can converge quickly and stably during the training process.
In addition, Fig. 15 shows the relationship between training
accuracy and epochs. It can be seen from Fig. 15 that the train-
ing accuracy of the method proposed in this article increases

faster and is more stable than other methods. In summary,
the PFSSC_SICS network can converge quickly and stably
during the training process and has strong convergence and
stability.

The size of the training samples determines the amount
of prior information used for classification. Generally speak-
ing, the accuracy of the network will improve as the num-
ber of samples increases. However, for methods with poor
performance, too many training samples will only increase
the running time without a large improvement in accuracy.
Therefore, in practical engineering, it is necessary to achieve
high-precision classification in the context of requiring the use
of small samples. In order to explore the classification ability
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Fig. 13. Classification maps of different methods on the UP: (a) ground truth and (b)–(j) SVM, SSRN, FDSSC, GDCNN, DBMA, DBDA, FECNet,
A2S2KResNet, and PFSSC_SICS.

Fig. 14. Relationship between training loss and epochs.

Fig. 15. Relationship between training accuracy and epochs.

of PFSSC_SICS under small samples, the performance of all
methods on four datasets is compared to verify the excellent
stability of PFSSC_SICS. In Fig. 16, the PFSSC_SICS optimal

results were achieved in any sample scale context across
all datasets, especially in 1% of the training samples; the
advantage of PFSSC_SICS is more prominent. This advantage
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Fig. 16. Classification results (OAs) of different methods on four datasets with different numbers of training samples: (a) IN; (b) SV; (c) KSC; and (d) UP.

just meets the need for good classification results in the case of
lack of HSI label samples. In addition, the PFSSC_SICS can
achieve optimal classification results under different training
proportions. With the increase of samples, the classification
performance of the network improves steadily, which also
proves the robust stability of PFSSC_SICS.

IV. CONCLUSION

This article proposes a new network for HSIC, namely,
PFSSC_SICS. PFSSC_SICS contains an SIC strategy for
removing similar spectral bands of different category, a PF
mechanism for extracting spatial-spectral features, and an SSC
module for spatial-spectral feature association. Finally, the
effectiveness of the proposed module is proven by a large
number of experiments. PFSSC_SICS solves the problem that
the local similarity of spectral features adversely affects the
classification of HSIs and effectively alleviates the impact of
the lack of sample labels on HSIC. In particular, PFSSC_SICS
shows obvious advantages in the case of small samples and
can obtain clear ground object boundaries on different datasets,
which provides strong guarantee for the practical applications
related to dense urban planning. From the perspectives of
classification performance, generalization, convergence, and
stability of the network, this article proves that PFSSC_SICS
is more advanced than the current mainstream methods.
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